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Abstract

This paper focuses on the development of parameter estimation techniques for models quantifying hysteresis
and constitutive nonlinearities in ferroelectric materials. These models are formulated as integral equations with
known kernels and unknown densities to be identified through least squares fit to data. Due to the compactness of
the integral operators, the resulting discretized models inherit ill-posedness which often must be accommodated
through regularization. The accuracy of regularized finite-dimensional models is illustrated through comparison
with experimental data.
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1. Introduction

Piezoceramic (PZT), magnetostrictive and shape memory alloy (SMA) compounds exhibit hysteresis and
constitutive nonlinearities which must be incorporated in models and model-based control algorithms to achieve
the novel performance capabilities offered by the materials. A number of modeling strategies for these compounds
have been proposed but three stand out in the sense that they provide unified frameworks for characterizing
hysteresis in ferroelectric, ferromagnetic and ferroelastic materials, which are collectively referred to as ferroic
compounds. These three approaches are the following: (i) homogenized free energy models [9, 13, 18], (ii) Preisach
formulations [1, 2, 12, 19], and (iii) domain wall models [6, 8, 11, 14, 15]. The first two are formulated as integral
equations whereas the domain wall models are typically posed as differential equations.

To simplify the discussion, we focus on the estimation of parameters in the homogenized free energy model
characterizing the hysteretic field-polarization relation for ferroelectric materials. It is demonstrated in [17] that
this framework can be used to characterize hysteresis in general ferroic compounds so analogous techniques can
be employed for ferromagnetic and ferroelastic materials. It is illustrated in [16] that this framework provides an
energy basis for certain extended Preisach formulations, and compactness results analogous to those established
here are proven for classical Preisach operators by Iyer and Shirley [7]. The reader is also referred to [5] for
details regarding the recursive identification of Preisach density functions.

The model is summarized in Section 2 and compactness of the integral operator is established in Section 3.
Parameter identification algorithms are summarized in Section 4 and illustrated in Section 5 in the context of
characterizing PZT5H data.
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2. Polarization Model

It is demonstrated in [18] that the hysteretic relation between the electric field E and polarization P in
ferroelectric materials can be characterized by the model

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν(Ec, Ee)[P (Ee + E;Ec, ξ)](t) dEe dEc (1)

where ν is a material-dependent parameter, P is the piecewise linear kernel or hysteron depicted in Figure 1,
and Ec, Ee respectively denote local coercive and effective fields. The kernel has the general form

P (Ee + E;Ec, ξ) =
E

η
+ PRδ(E;Ec, Ee) (2)

where ξ delineates initial dipole orientations. The parameter δ has a value of 1 for positively oriented dipoles
and -1 for negative orientations. More rigorously, P can be specified as

[P (E;Ec, ξ)](t) =


[P (E;Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec

where

[P (E;Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

defines the initial states of the kernel and

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec}
designates the set of switching times.

The density is assumed to have the product formulation ν(Ec, Ee) = ν1(Ec)ν2(Ee) where ν1 and ν2 satisfy
the physical conditions

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1(x−b1),

|ν2(x)| ≤ c2e
−a2x

(3)

for positive c1, a1, b1, c2, a2. The goal in the parameter identification problem is to estimate ν given data mea-
surements {(Êk, P̂k)}, k = 1, . . . , Nd.

cE

PI

RP P

E

Figure 1: Piecewise linear kernel P .
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By invoking the physical decay criteria, (1) can be approximated to arbitrary accuracy by consideration of

[P (E)](t) =
∫∫
Ω2

ν(Ec, Ee)[P (E + Ee;Ec, ξ)](t) dEe dEc (4)

on the compact domain
Ω2 = {(Ec, Ee) ∈ lR+ × lR | ν(Ec, Ee) ≥ ε}.

Furthermore, we let the minimum and maximum admissible input fields be denoted Emin and Emax and
define

Ω1 = [Emin, Emax].

We consider parameters q = ν in the parameter space

Q = L2(Ω2) (5)

and define the observation operator CP = P (E) on the observation space

Y = L2(Pmin, Pmax). (6)

The polarization model (4) can then be formulated as

y(E) = Kq(E)

where
E ∈ C[Ω1] ⊂ L2(Ω1)

and the parameter-to-observation operator K is defined by

Kq = C
∫∫
Ω2

k(·+ Ee, Ec)q(Ec, Ee) dEe dEc. (7)

It is readily observed that due to the affine construction of k = P , k ∈ L1(Ω) and k ∈ L2(Ω) where

Ω = Ω1 × Ω2.

The property that k ∈ L1(Ω) is typical for convolution operators whereas k ∈ L2(Ω) facilitates construction of
a generalized Fourier basis for the operator. We employ this latter property in Section 3 to establish that K is
a compact operator.

For implementation purposes, it is demonstrated in [18] that Gaussian quadrature can be employed to ap-
proximate the integrals, thus yielding the system

[P (E)](t) =
Ni∑
i=1

Nj∑
j=1

ν(Eci
, Eei

)[P (Eei
+ E;Ecj

, ξ)](t)viwj (8)

where vi and wj denote quadrature weights and ν : RNi·Nj → R. To formulate (8) as a linear system, we define
the Ni ×Nj matrices A(E) and Φ to have components

[A(E)]ij =
[
E + Eej

η
+ PRδ(E;Eci

, Eej
)
]

viwj

[Q]ij = ν(Eci
, Eej

).

For N = Ni ·Nj , we define the N × 1 vector q and 1×N vector a(E) by

q = vec(Q) , a(E) = [vec(A(E))]T

3



where ‘vec’ denotes the vector concatenation of the respective matrices. The discretized polarization model (8)
can then be formulated as the linear system

P (E) = a(E)q. (9)

We note that η is considered known and fixed in this formulation and is incorporated in a(E).

3. Compactness of the Polarization Operator

In this section, we establish that the operator K given by (7) is compact. As a prelude, we state the following
theorem which is Theorem 5.24.8 from [10].

Theorem 1. Let X and Y be Banach spaces and let KN : X → Y,N = 1, 2, . . . , be a sequence of compact linear
operators converging to a bounded linear operator K : X → Y ; that is, ‖KN −K‖ → 0 as N →∞. Then K is a
compact linear operator.

Remark 1. Consider the parameter space Q and observation space Y defined in (5) and (6). The integral
operator given by (7) is then a compact operator. We establish this by demonstrating that K is the limit of a
sequence of finite rank operators followed by the use of Theorem 1.

We first construct an orthonormal basis {φi} for L2(Ω). It is illustrated in [10] that

ϕ`(s) =
1√

Emax − Emin

exp
[
2πi` · s− Emin

`− Emin

]
, ` = 0,±1,±2, · · ·

forms an orthonormal basis for L2(Ω1). With an analogous basis definition for L2(Ω2), it follows that an
orthonormal basis for L2(Ω) is

φ`m(s, t, v) = ϕ`(s)ϕm(t, v)

which we re-index as {φi}.
It follows that every f ∈ L2(Ω) has the generalized Fourier series representation

f =
∑

i

〈f, φi〉φi

where 〈·, ·〉 denotes the usual L2 inner product. The norm representation

‖f‖2 =
∑

i

| 〈f, φi〉 |2

follows from Plancheral’s theorem. Moreover, we can represent K and approximating finite-rank operators KN

by
Kf =

∑
i

〈f, φi〉ψi

KNf =
N∑

i=1

〈f, φi〉ψi

where ψi ≡ Kφi.
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To establish the convergence K → KN , we note that

‖Kf −KNf‖ =
∥∥∥∥ ∑

i≥N+1

〈f, φi〉ψi

∥∥∥∥
≤

∑
i≥N+1

| 〈f, φi〉 | ‖ψi‖

≤
[ ∑

i≥N+1

| 〈f, φi〉 |2
]1/2[ ∑

i≥N+1

‖ψi‖2
]1/2

≤ ‖f‖
[ ∑

i≥N+1

‖ψi‖2
]1/2

where the third inequality follows from the Schwartz inequality. Furthermore, we observe that∑
i

‖ψi‖2 =
∑

i

[ ∫
Ω1

|Kφi(E)|2 dE

]

=
∑

i

∫
Ω1

∣∣∣∣ ∫∫
Ω2

k(E + Ee, Ec)φi(Ec, Ee) dEe dEc

∣∣∣∣2 dE

=
∫

Ω1

[ ∑
i

∣∣∣∣ ∫∫
Ω2

k(E + Ee, Ec)φi(Ec, Ee) dEe dEc

∣∣∣∣2 ]
dE

=
∫

Ω1

[ ∫∫
Ω2

|k(E + Ee, Ec)|2 dEe dEc

]
dE < ∞.

The last step follows from Plancheral’s theorem. The convergence of
∑

i ‖ψi‖2 implies that
∑

i≥N+1 ‖ψi‖2 → 0
as N →∞. Thus for ε > 0, there exists Nε such that for N > Nε,

‖K − KN‖ = sup
f 6=0

‖Kf −KNf‖
‖f‖ < ε

which establishes that
lim

N→∞
‖K − KN‖ = 0.

Since the range of KN is finite, it follows that KN is a compact operator. The compactness of K follows from
Theorem 1 since it is the norm limit of a sequence of compact operators.

The compactness of K given by (7) is to be expected since it is a special case of a Hilbert-Schmidt operator
which, in general, can be characterized as having an L2 kernel. This is evidenced by the fact that the proof given
here is a modification of that in [4] for Hilbert-Schmidt operators with kernels in L2(lR2n).

4. Parameter Identification Problem

For the operator K defined in (7), data P̂ corresponding to input fields Ê ∈ L2(Emin, Emax), and parameter
space Q = L2(Ω2), the parameter estimation problem can be formulated as follows: find q ∈ Q so that

Kq = P̂ . (10)

We note that (10) has a classical solution if and only if P̂ ∈ R(K), where R(K) denotes the range of K, which,
in general, will not be true. Instead it is more reasonable to consider the least squares problem

min
q∈Q

T (q) , T (q) =
1
2
‖Kq − P̂‖2Y . (11)

5



However, because K is compact with infinite dimensional range, the Moore-Penrose inverse K† is discontinuous
so that even (11) is ill-posed — see [3]. This motivates consideration of the augmented functional

Tα(q) =
1
2
‖Kq − P̂‖2Y + αJ (q) (12)

and the regularized least squares minimization problem

min
q∈Q

Tα(q). (13)

The regularization parameter α > 0 controls the tradeoff between goodness of fit to the data and stability
whereas the penalty functional J provides stability and allows the inclusion of a priori information regarding
the parameter q. One choice for J is the Tikhonov functional which we illustrate in the context of the discretized
problem.

To formulate the finite-dimensional parameter estimation problem, we modify the linearly parameterized
system (9) to reflect measured data. We define the Ni ×Nj matrices

[Ak]ij =

[
Êk + Eej

η
+ PRδ(Êk;Eci

, Eej
)

]
viwj

[Q]ij = ν(Eci
, Eej

)

and vector concatenations
q = vec(Q) , ak = [vec(Ak)]T

so that q and ak are respectively 1×N and N × 1 where N = Ni ·Nj . Additionally, the Nd × 1 vectors P and
P̂ are defined componentwise by

[P]k = P (Êk; q) , [P̂]k = P̂k (14)

and the Nd ×N matrix A is defined row-wise by

[A]k = ak.

The discretized polarization model (8) can then be formulated as the linearly parameterized system

P(Êk) = Aq.

The unregularized least squares problem used to estimate q = ν ∈ Q = lRNi·Nj given measurements
{(Êk, P̂k)}, k = 1, . . . , Nd is the following:

min
q∈Q

T (q) , T (q) =
1
2
‖Aq − P̂‖2

subject to qi ≥ 0, j = 1, . . . , N.

(15)

Here ‖ · ‖ denotes the Euclidean norm in lRN . To incorporate Tikhonov regularization, we consider the mini-
mization problem

min
q∈Q

Tα(q) , T (q) =
1
2
‖Aq − P̂k‖2 +

α

2
‖q‖2

subject to qi ≥ 0, j = 1, . . . , N.

(16)

Techniques for choosing α to avoid oversmoothing solutions as well as a solution algorithm for (16) can be found
in Vogel [20].
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5. Validation Example

To illustrate attributes of the least squares parameter estimation formulations (15) and (16) for estimating
the N = Ni ·Nj parameters {ν(Eci

, Eej
)}, we consider the characterization of PZT5H. The unregularized model

fits obtained with Ni = Nj = 24 and Ni = Nj = 48 using data from all seven hysteresis loops are plotted
in Figure 2 whereas those obtained using the same quadrature limits in the regularized functional are given in
Figure 3. Without regularization, the ill-posedness associated with inversion of the compact integral operator
K yields increasingly inaccurate model predictions as discretization limits are increased. Regularization through
the inclusion of the penalty term α

2 ‖q‖2 stabilizes the pseudoinverse by shifting singular values away from the
origin thus yielding the highly accurate fit observed in Figure 3.
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Figure 2: PZT5H data and model fit with general product density ν estimated using the unregularized functional
(15) with data from all 7 loops. (a) Ni = Nj = 24 (N = 576), and (b) Ni = Nj = 48 (N = 2304).
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Figure 3: PZT5H data and model fit with general product density ν estimated using the regularized Tikhonov
functional (16) with data from all 7 loops. (a) Ni = Nj = 24 (N = 576), and (b) Ni = Nj = 48 (N = 2304).

6. Concluding Remarks

In this paper we have developed a well-posed framework for estimating parameters in a model used to
characterize the hysteretic and nonlinear field-polarization relation inherent to ferroelectric materials. The
model is comprised of a compact integral operator with infinite-dimensional range so regularization is required
to guarantee that the inverse problem is well-posed. It is illustrated through a fit to PZT5H data that Tikhonov
regularization yields highly accurate model fits which retain stability as discretization limits are increased.
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